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Abstract We study a different variant of left-right symmet-
ric model, incorporating Dirac type neutrinos. In the absence
of the bi-doublet scalars, the possibility of a universal see-
saw type of mass generation mechanism for all the Standard
Model charged fermions have been discussed. The model has
been constructed by extending the Standard Model particle
spectrum with heavy vector-like fermions as well as different
scalar multiplets. We have shown that this model can generate
non zero neutrino mass through loop mediated processes. The
parameters which are involved in neutrino mass generation
mechanism can satisfy the neutrino oscillation data for both
normal and inverted hierarchy. The lightest charged Higgs
plays a crucial role in neutrino mass generation mechanism
and can have mass of O[GeV]. We have systematically stud-
ied different constraints which are relevant for the charged
Higgs phenomenology. In addition to that we also briefly
discuss discovery prospects of the charged Higgs at different
colliders.

1 Introduction

The Standard Model (SM) of particle physics consistently
describes the dynamics of three out of four fundamental
forces of nature. The last missing puzzle of the theory, the
Higgs boson which arises due to the manifestation of the
Brout–Englert–Higgs (BEH) mechanism [1–6] was discov-
ered by the ATLAS [7] and CMS [8] collaboration in the
beginning of last decade. Since its discovery the experimen-
talists have studied its properties with a great detail and the
information accumulated from these analysis solidify the tri-
umph of the SM. Having said that, the questions that revolve
around the SM from both the theoretical as well as experi-
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mental stand point motivate physicists to consider the SM as
a minimal theory and an extended version of this model is
required to address these questions.

Out of the various shortcomings of the SM, eV light neu-
trino mass and their mixing remains one of the most signif-
icant one. In SM these neutral leptons are considered to be
massless, which is in disagreement with the measured neu-
trino oscillation data [9]. The simplest solution to explain
light neutrino masses is to add three right handed SM gauge
singlet neutrino fields νR with the existing SM particle con-
tents and generate Dirac mass term. The eV scale masses of
the neutrinos however force to choose tiny Yukawa coupling
Yν ∼ 10−11. The presence of small Yν introduces additional
Hierarchy problem to the theory. As neutrino is a neutral
fermion, another compelling solution is to consider it as a
Majorana particle instead of Dirac particle. With this, small
neutrino masses can be generated from the d = 5 lepton
number violating (LNV) Weinberg operator [10] via seesaw
mechanism [11–14].

If neutrinos are Majorana particles, they give rise to dif-
ferent lepton number violating (LNV) signatures, such as,
neutrino-less double beta decay, LNV decays of mesons, as
well as, LNV processes at the LHC. The null results from
these experiments enforce stringent bounds on correspond-
ing processes, such as, on the half-life of 0νββ process in case
of neutrino-less double beta decay, on the relevant produc-
tion cross-section in case of LHC etc. As a result the Dirac
type neutrino mass models also remain a much motivated
option, see [15–26] for few of the previous studies. To avoid
any additional hierarchy problem, tiny neutrino masses can
be generated via loop diagrams where relatively heavy par-
ticles flow in the loop and shift the neutrino mass pole to a
non zero value. The mass generation in this scheme does not
demand unnatural fine-tuning of any model parameter. One
may recall examples such as, Scotogenic Model [27], Zee-
Babu Model [28–30] etc. The work by Ma and Sarkar [31]
has systematically summarised the different avenues for the
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Dirac neutrinos to achieve masses via radiative process. In
this work, we consider an alternate version of gauge extended
left-right symmetric model (LRSM) with two scalar doublets
and a charged scalar singlet and explore Dirac neutrino mass
generation in detail. In LRSM, one can naturally introduce
right-handed neutrino fields νR which belong to doublets
under SU (2)R gauge group. In the absence of a scalar bi-
doublet which is charged under both the SU (2)L/R groups,
the fermions in the model remain massless. One can generate
tree level masses for quarks and charged leptons by introduc-
ing heavy vector-like fermions. The mass generations scheme
is known as universal seesaw mechanism [31–35]. In absence
of any gauge singlet fermionic field, the neutrino however
acquires mass via radiative processes. The idea to generate
one loop diagrams, relevant for neutrino mass generation is
straightforward. One needs to connect νL and νR with an
internal fermion and scalar line. With this set up one can
come up with four independent structures out of which two
correspond to Zee-Babu and Scotogenic model. The remain-
ing two possibilities were first discussed in [31] with exotic
scalar representations playing crucial role in neutrino mass
generation.

In this paper we present a detail description of a vari-
ant of LRSM model where the left right gauge sector does
not mix through a scalar bi-doublet. Using the idea of uni-
versal seesaw mechanism we generate the masses for the
SM-like charged fermions with the help of heavy vector-like
fermions. As a result, the model possesses a natural expla-
nation for the observed fermion mass hierarchy between the
SM quarks and leptons. On the other hand the Dirac-like
neutrinos in this model remain massless at tree level. Apart
from the extended gauge and fermion sector the model also
contains an enlarged scalar sector with exotic scalar rep-
resentations. These scalar fields generate the tiny mass of
neutrinos through loop-mediated process. In this model the
mechanism for the neutrino mass generation can be under-
stood as the amalgamation of two recently proposed method,
mentioned in [31]. In addition to the neutrino mass genera-
tion, we also discuss the direct and indirect constraints on
the model parameters coming from ATLAS di-lepton+MET
search, LEP mono-photon search as well as from Big-Bang
Nucleosynthesis. We analyse the production cross-section as
well as branching ratios of the gauge singlet charged Higgs
and briefly discuss discovery prospect at different colliders.

The article is organized in the following manner. In Sect. 2,
we begin with the general set up of the model and describe
the gauge, scalar and fermion sector in a detailed manner.
In Sect. 3, we discuss the mechanism of neutrino mass gen-
eration and show the allowed region of the parameter space
which satisfy the well-measured neutrino oscillation data.
In Sect. 4, we discuss the phenomenological aspects of our
model focusing on the lightest singly charged scalar present
in our model. By scrutinizing all the possible direct as well

as indirect searches, we show the available parameter space.
Finally, in Sect. 5, we summarize our findings.

2 A brief review of the model

2.1 General model setup

The model we have considered here is based on the gauge
group: SU (3)C × SU (2)L × SU (2)R ×U (1)B−L , which is a
minimal extension of the SM gauge symmetry with an addi-
tional SU (2)R gauge symmetry. We further assume that the
SU (2)L group resembles with the SM counterpart. The gauge
coupling corresponding to each gauge groups are denoted
as gL , gR and gB−L respectively. Two scalar doublet fields
�L and �R which are charged under SU (2)L and SU (2)R
respectively develop vevs and invoke the spontaneous sym-
metry breaking in this model. The �R field breaks the elec-
troweak symmetry down to SU (2)L × U (1)Y at the energy
scale vR . After that the other scalar doublet �L develops a
vev (vL ) and breaks the residual symmetry down toU (1)EM .

Based upon the electroweak symmetry breaking (EWSB)
pattern, the charge operator in this model can be defined
as [36], Q̂ = T3 L

2 + T3R
2 + YB−L

2 .1 In Eq. 1 we present the
explicit form of these scalar doublet fields

�L =
[
φ+
L

φ0
L

]
⇒

[
φ+
L

vL√
2

+ h0
L+iπ0

L√
2

]
,

�R =
[
φ+
R

φ0
R

]
⇒

[
φ+
R

vR√
2

+ h0
R+iπ0

R√
2

]
. (1)

In our notation, φ+
L and φ+

R denotes the charged goldstone
fields whereas the π0

L and π0
R denotes the neutral goldstone

bosons. The h0
L and h0

R are the CP-even Higgs bosons which
are written in the gauge basis. The vL and vR are the vev’s
correspond to the doublet fields �L and �R respectively.
Throughout this paper we fix the value of vL to be EWSB
scale v = vL � 246 GeV. Apart from the scalar doublets,
the model contains other exotic scalar fields which play a
crucial role for the neutrino mass generation in this model.
It is important to note that these exotic fields do not take part
in the EWSB. In Eq. 2 we present the explicit form of these
fields. The ζL/ζR are SU (2)L/SU (2)R doublets which con-
tain both the doubly and singly charged components whereas
the χ± is a SU (2)L/R singlet. In Table 1 we present the gauge
charges of these fields with respect to the underlying sym-
metry:

ζL =
[
ζ++
L
ζ+
L

]
, ζR =

[
ζ++
R
ζ+
R

]
, χ±. (2)

1 The subscript in each of the generators denotes the corresponding
gauge group.
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Table 1 Scalar representation of the model

Multiplets SU (3)C × SU (2)R × SU (2)L ×U (1)B−L

�L (1, 1, 2, 1)

�R (1, 2, 1, 1)

ζL (1, 1, 2, 3)

ζR (1, 2, 1, 3)

χ+ (1, 1, 1, 2)

The interesting aspect of our model is the absence of bi-
doublet scalar field which is charged under both the SU (2)L
and SU (2)R groups. As a consequence of this, the mixing
between light and heavy gauge bosons is minimal contrary
to the conventional left-right symmetric models [37–39]. We
will elaborate on this in the coming section.

The LRSM with an exact parity symmetry has been exten-
sively studied in [37–43], where the parity is spontaneously
broken at a high energy scale. Another class of LRSMs exits
where a discrete left-right symmetry named as D-parity is
broken at a higher scale compared to the breaking scale of
SU (2)R gauge group [44–51]. In this work, we also assume
that the parity is broken at a high energy scale and leaves
an approximate parity invariance rather than an exact one.
We will not discuss the details of parity breaking mechanism
because our work focus in an energy regime which is much
lower than the scale at parity breaking occurs.

2.2 Gauge sector

The kinetic energy term corresponds to electroweak gauge
sector takes the following form

LK .E . = −1

4
Faμν
R Fa

Rμν − 1

4
Faμν
L Fa

Lμν − 1

4
BμνB

μν (3)

where Bμν = ∂μBν − ∂νBμ is the field-strength tensor cor-
responding to U (1)B−L gauge group and Faμν

L/R (a = 1
to 3) is representing the field-strength tensor correspond to
SU (2)L/R gauge groups. Out of these seven gauge fields, six
become massive after EWSB. To calculate the mass of each
of the gauge bosons, one needs to write down the scalar field
kinetic energy terms. In Eq. 4 we present the explicit form
for this.

LGauge =
(
DL

μ�L

)†
DL

μ�L +
(
DR

μ�R

)†
DR

μ�R

+
(
DL

μζL

)†
DL

μζL +
(
DR

μζR

)†
DR

μζR

+
(
DS

μχ
)†

DS
μχ. (4)

The covariant derivatives corresponds to individual scalar
multiplets are defined as –

DL
μ = ∂μ − igL

2
σ aWa

μL − igB−L

2
YB−L Bμ,

DR
μ = ∂μ − igR

2
σ aWa

μR − igB−L

2
YB−L Bμ,

DS
μ = ∂μ − igB−L

2
YB−L Bμ. (5)

Here σ i with i∈ [1, 3] corresponds to three Pauli matrices.
After EWSB the charged and neutral gauge bosons mass
eigen states are defined as {W±

Lμ,W±
Rμ}, {ZLμ, ZRμ} respec-

tively. The mass squared terms for each of the charged gauge
bosons W±

Lμ and W±
Rμ are,

M2
W±

L
= g2

Lv2
L

4
, M2

W±
R

= g2
Rv2

R

4
. (6)

The absence of cross term between the W±
Lμ and W±

Rμ would
make them orthogonal to each other even in the gauge basis.
This is the consequence of not having any bi-doublet scalar
in our model. We identify W±

Lμ as the SM like charged gauge
bosons for our subsequent discussion. The neutral gauge
boson mass matrix takes the following form in the gauge
basis, {Bμ, W 3

μL , W 3
μR}:

M2
NGB = 1

4

⎡
⎣g2

B−L

(
v2
L + v2

R

) −gB−LgLv2
L −gB−LgRv2

R
−gB−LgLv2

L g2
Lv2

L 0
−gB−LgRv2

R 0 g2
Rv2

R

⎤
⎦ .

(7)

The M2
NGB mass matrix has two non-zero and one zero eigen-

values. The eigenstate corresponds to the zero eigenvalue of
the M2

NGB matrix is identified as photon (Aμ). On the other
hand the neutral gauge bosons ZμL and ZμR have non-zero
mass eigen values, MZL and MZR respectively. In Eq. 8, we
present the explicit form of these masses. Out of these two
neutral gauge bosons ZL is the lighter one and ZR is its heav-
ier counter part. Here after we consider the lighter state (ZL )
as the SM Z -boson:

M2
ZL

= 1

4

v2
Lg

2
L

c2
θW

, M2
ZR

= 1

4

(
g2
B−Ls

2
φW

+ g2
Rv2

R

c2
φW

)
. (8)

To diagonalise the neutral gauge boson mass matrix one
needs to perform three consecutive similarity rotations as
discussed in [52,53]. The relation between the gauge basis
{Bμ,W 3

μL ,W 3
μR} and the mass basis {Aμ, ZμL , ZμR} is

defined in Eq. 9:⎡
⎣ Bμ

W 3
μL

W 3
μR

⎤
⎦ =

⎡
⎣cφW 0 −sφW

0 1 0
sφW 0 cφW

⎤
⎦

⎡
⎣cθW −sθW 0
sθW cθW 0
0 0 1

⎤
⎦

×
⎡
⎣1 0 0

0 cρW −sρW
0 sρW cρW

⎤
⎦

⎡
⎣ Aμ

ZμL

ZμR

⎤
⎦ . (9)
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Here si and ci denote sine and cosine of the angle i (where
i = φW , θW , ρW are the mixing angles) respectively. The
angle θW represents the usual Weinberg angle. In Eq. 10, we
parameterize these mixing angles in terms of various gauge
couplings present in the model [52,53]:

sθW = gY√
g2
L + g2

Y

= e

gL
, sφW = gB−L√

g2
B−L + g2

R

= gY
gR

t2ρW = 2cφW cθW gLgRs
2
φW

v2
L

(g2
L − c2

θW
g2
B−Ls

2
φW

)c2
φW

v2
L − c2

θW
g2
Rv2

R

. (10)

In Eq. 10 we denote t2ρW as tan(2ρW ). In addition the gY
and e stands for the usual hypercharge and electromagnetic
couplings respectively. Using normalization condition of the
photon state Aμ one can establish the following relation
between the gauge couplings and electromagnetic constant
e:

1

e2 = 1

g2
L

+ 1

g2
R

+ 1

g2
B−L

,
1

g2
Y

= 1

g2
R

+ 1

g2
B−L

. (11)

2.3 Scalar sector

We now turn our attention to the scalar sector of this model. In
Eq. 12 we present the most general potential which is invari-
ant under the SU (2)L × SU (2)R ×U (1)B−L gauge group:

V
(
�i , χ, ζ j

) = λ1|�†
L�L |2 + λ2|�†

R�R |2
+λ3

[
�

†
L�L�

†
R�R

]
+ λ4|χ†χ |2

+μ2
χχ†χ + μ2

ζ

(
ζ

†
LζL + ζ

†
RζR

)

+λ5

[
ζ

†
LζL + ζ

†
RζR

]2

+λ6

(
ζ

†
LζL�

†
L�L + ζ

†
RζR�

†
R�R

)

+λ7

(
ζ

†
LζL�

†
R�R + ζ

†
RζR�

†
L�L

)

+λ8

[
�

†
L�L + �

†
R�R

]
χ†χ

+λ9

[
ζ

†
LζL + ζ

†
RζR

]
χ†χ

+λ10

[
�

†
LζLζ

†
R�R + �

†
RζRζ

†
L�L

]

+λ11

[
�

†
LζLζ

†
L�L + �

†
RζRζ

†
R�R

]

+
[
�′χ−φ

†
LζL + �′′χ−φ

†
RζR + h.c

]

−μ2
L�

†
L�L − μ2

R�
†
R�R . (12)

Both the doublet fields, �L and �R,that are charged under
SU (2)L and SU (2)R gauge group acquire vevs and break
the underlying symmetry down to U (1)EM . The rest of the
scalar multiplets do not acquire any vev and do not participate
in the EWSB. Using the minimization condition [54] of the
scalar potential V

(
�i , χ, ζ j

)
i.e. ∂V

∂vL
= ∂V

∂vR
= 0, one can

express different vevs in terms of the scalar parameters (λi )
in the following manner

v2
L

2
= λ3μ

2
R − 2λ2μ

2
L

λ2
3 − 4λ1λ2

(13)

v2
R

2
= λ3μ

2
L − 2λ1μ

2
R

λ2
3 − 4λ1λ2

. (14)

From Eqs. 13 and 14 it is evident that in case of μL = μR

both the vevs (vL and vR) become equal. As a consequence an
exact parity invariance would emerge. A difference between
vL and vR can however be generated through different radia-
tive corrections. In the beginning of Sect. 2.1, we have men-
tioned that we consider parity to be broken at a high energy
scale and leaves an approximate parity invariance rather than
an exact one. As a result one can assume μL �= μR . The
assumption is valid as we are working at a scale where par-
ity invariance is not realized. Using this assumption we will
fix vR 	 vL for our further study, with the assumption
μL 	 μR . In absence of the exact parity invariance, one can
also write two soft breaking terms which are proportional to
�′ and �′′ respectively. In our further study, we consider a
very small �′ and �′′ for which, as we will show in the next
section, one of the charged Higgs (χ±) become decoupled.

Along with the quadratic field terms the scalar potential
contains various mixing terms which are permitted by the
gauge symmetry of the model. Moreover these mixing terms
can bring forth rich phenomenological aspects for this model.
The neutral component of �L and �R i.e. h0

L and h0
R, mix

among each other through the potential term proportional to
λ3. The 2 × 2 mass matrix corresponding to these real scalar
fields takes the following form in the gauge basis

M2
Even = 1

2

[M11 M12

M12 M22

]

= 1

2

[−μ2
L + 3λ1v

2
L + λ3

2 v2
R

λ3
2 vRvL

λ3
2 vRvL −μ2

R + 3λ1v
2
R + λ3

2 v2
L

]
.

(15)

The off-diagonal terms of the above mass matrix are equal
due to the hermiticity. After diagonalising M2

Even, one can
obtain the following two neutral scalar mass eigenstates

H0 = cos θh0
L + sin θh0

R

hsm = − sin θh0
L + cos θh0

R (16)

where the mixing angle θ is defined as

tan 2θ = 2M12

M22 − M11
(17)

and MH0/hsm are the eigenvalues correspond to each these
mass states. The explicit form of these mass eigenvalues are
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M2
H0/hsm

= 1

2

[
M11+M22 ±

√
(M22−M11)

2 +4M2
12

]
.

(18)

Hereafter in our discussion we denote the hsm as the SM-
like Higgs boson which has been discovered at the LHC.
In the limit vR 	 vL the mass of the heavy Higgs H0 is
proportional to SU (2)R breaking scale vR . In this regime the
mixing between the light Higgs hsm and the heavy Higgs H0

is minimal and the value of scalar parameter λ1 will be in the
range of SM scalar self-coupling λh .

Apart form the neutral Higgs bosons the particle spec-
trum of the model contains both singly and doubly charged
scalars, ζ±

L , ζ±
R , χ±, ζ±±

L , ζ±±
R , after symmetry breaking.

The underlying electroweak symmetry does not permit the
doubly charged Higgses to mix among each other. In Eq. 19
we write down the explicit mass terms for the doubly charged
fields by adding up the appropriate quadratic order field terms

M2
ζ++
R

= μ2
ζ + λ6v

2
R + λ7v

2
L

2

M2
ζ++
L

= μ2
ζ + λ6v

2
L + λ7v

2
R

2
. (19)

The absence of an explicit mixing term makes the dou-
bly charged scalars (ζ±±

L , ζ±±
R ) to be orthogonal even in the

gauge basis. In contrast to that a similar conclusion can not be
made for the singly charged scalars: χ±, ζ±

L , ζ±
R . The terms

associated with �′′, �′ and λ10 give rise to nontrivial cross
terms between various singly charged scalar fields in this
model. In Eq. 20, we present the explicit form of the singly
charged scalar mass matrix in the gauge basis {χ±, ζ±

L , ζ±
R }

M2± =
⎡
⎣ Mχ MχL MχR

MχL ML MLR

MχR MLR MR

⎤
⎦

=

⎡
⎢⎢⎢⎣

μ2
χ+ λ8

2

(
v2
L+v2

R

)
�′vL√

2
�′′vR√

2
�′vL√

2
μ2

ζ + λ6v2
R+λ7v2

L
2 + λ11

2 v2
L

λ10
2 vLvR

�′′vR√
2

λ10
2 vLvR μ2

ζ + λ6v2
L+λ7v2

R
2 + λ11

2 v2
R

⎤
⎥⎥⎥⎦ .

(20)

The next step is to diagonalise the above 3 × 3 matrix
to derive the mass eigenstates and eigenvalues of the singly
charged scalars respectively. In order to do so, one need to
construct the appropriate unitary matrix that would diago-
nalise M2± and establish the relation between the gauge basis
and mass basis. One can obtain this result by applying the
Jacobi prescription for matrix diagonalisation. For simplicity
we assume the soft-breaking terms proportional �′,�′′ ∼ 0,

which decouples the singlet charged scalar (χ±) from the
rest of the two singly charged scalars and its mass is equal
to Mχ . In this scenario, the above matrix in Eq. 20 takes the

following block diagonal form

M2± =
⎡
⎣Mχ 0 0

0 ML MLR

0 MLR MR

⎤
⎦ . (21)

To diagonalise the above mass matrix one can use the fol-
lowing rotational matrix

U± =
⎡
⎣1 0 0

0 cos θ± − sin θ±
0 sin θ± cos θ±

⎤
⎦

where the mixing angle θ± can be defined as

tan 2θ± = 2M2
LR

M2
R − M2

L

. (22)

The mass Mζ±
L

and Mζ±
R

corresponding to ζ±
mL and ζ±

mR fields
can be obtained using the following relations

M2
ζ±
L /ζ±

R
= 1

2

[
MR + ML ∓

√
(MR − ML)2 − 4M2

LR

]
.

(23)

In Eq. 24 we present the physical basis of the singly charged
scalars in terms of gauge basis

χ±
m ∼ χ±

m

ζ±
mL = cos θ± ζ±

L + sin θ± ζ±
R

ζ±
mR = − sin θ± ζ±

L + cos θ± ζ±
R . (24)

2.4 Fermion sector

The matter sector of the model contains both the left and right
handed doublet fermions which are transforming under the
SU (2)L and SU (2)R gauge group respectively. In addition
to that there are SU (2) singlet fields correspond to each of
the charged fermions

Qi
L ,R =

[
uiL ,R
diL ,R

]
, Li

L ,R =
[
νiL ,R
eiL ,R

]
, Ui

L ,R, Di
L ,R, Ei

L ,R .

(25)

In Eq. 25 Qi
L(Li

L) represent SU (2)L doublets and SU (2)R
singlets whereas QR(LR) are SU (2)R doublets and SU (2)L
singlets, respectively. Ui

L ,R, Di
L ,R and Ei

L ,R are the heavy
fermionic fields that transform as singlets w.r.t SU (2)L ×
SU (2)R gauge group. The index i∈ [1, 3] signifies different
generations of these fermions. The gauge charge assignment
correspond to each of these fermion fields is illustrated in
Table 2.

The presence of both the left and right fermion doublets is
an immediate consequence of the left-right symmetric nature
of this model. In absence of neutral singlet fermion field, the
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Table 2 Fermions content of the model

Multiplets SU (3)C × SU (2)R × SU (2)L ×U (1)B−L

Quarks

Qi
L (3, 1, 2, 1

3 ) =
[
uiL
diL

]

Qi
R(3, 2, 1, 1

3 ) =
[
uiR
diR

]

Ui
L ,R(3, 1, 1, 4

3 )

Di
L ,R(3, 1, 1, −2

3 )

Leptons

LL i (1, 1, 2,−1) =
[
νLi

eLi

]

LRi (1, 2, 1,−1) =
[
νRi
eRi

]

EL ,Ri (1, 1, 1,−2)

model prohibits neutrinos to get mass in the same way as the
charged fermions do at tree level. In Eq. 26 we write down
the fermion Lagrangian following the gauge symmetry as

Lyuk = Y i j
uL QLi �̃LURj + Y i j

dL QLi�L DRj

+Y i j
eL LLi�L ERj + Y i j

z Lc
LiζL EL j + Y i j

c Lc
Li LL jχ

+

+Y i j
q UL DRχ+ + (L → R) +ULiMi j

UURj

+DLiMi j
DDRi + ELiMi j

E ERj + h.c. (26)

Here i, j are the generation indices and �̃L/R = iτ2�
∗
L/R

where τ2 stands for second Pauli matrix. Apart from the �L/R

fields, the other scalar representations, viz ζL ,R and χ± do
not contribute to different charged fermion masses. However,
they play important role in neutrino mass through loop medi-
ated processes. We will discuss this elaborately in Sect. 3.
Before writing down the mass matrices correspond to quarks
and leptons we like to comment on the different parameters
that are involved in Eq. 26.

• To obtain correct SM fermion masses we consider that
the Yukawa couplings Y i j

uL/Y i j
dL/Y i j

eL resemble with the
SM counterpart. We further assume that all these Yukawa
matrices are real and do not give rise to CP-violating inter-
actions. The CP-violation is not the focus of our current
study. Due to this consideration the couplings between
Higgs and SM-like fermions receive minimal modifica-
tion.

• To make our calculation simple we consider that the bare
mass terms correspond to the heavy vector like fermions,
Mi j

U/D/E , are diagonal. As an outcome these matrices
can not serve as a possible source for FCNC processes.

• To simplify our calculation even further, we fix the
explicit form of Y i j

z and Y i j
c matrices. From space-time

symmetry one can realise that the Y i j
c is anti-symmetric

matrix. However to minimize the number of independent
parameters we considered the Y i j

z matrix to be diagonal
which is in reality can be an arbitrary 3 × 3 complex
matrix. Keeping that in mind we define the matrix Y i j

z

and Y i j
c in following fashion:

Y i j
z ⊂ {Symmetric Matrices} →

⎡
⎣Y11 0 0

0 Y22 0
0 0 Y33

⎤
⎦

(27)

Y i j
c ⊂ {Anti-Symmetric Matrices}→

⎡
⎣ 0 Yc

12 Yc
13−Yc

12 0 Yc
23−Yc

13 −Yc
23 0

⎤
⎦ .

(28)

Invoking symmetry breaking in Eq. 26 one can write down
the mass matrices correspond to the charged fermions as dis-
cussed in [32,55–57]

Mu =
⎡
⎣ 0 YuLvL√

2
Y†
uRvR√

2
MU

⎤
⎦ , Md =

⎡
⎣ 0 YdLvL√

2
Y†
dRvR√

2
MD

⎤
⎦ ,

Me =
⎡
⎣ 0 YeLvL√

2
Y†
eRvR√

2
ME

⎤
⎦ . (29)

The generation of fermion masses is diagrammatically
illustrated in Fig. 1. To obtain the mass eigenstates, corre-
sponding to mass matrices that are mentioned in Eq. 29 one
needs to diagonalise these using appropriate bi-unitary trans-
formations

MD
x = UL

x MxU
R†
x . (30)

In Eq. 30 we present the diagonalisation of the mass matri-
ces while invoking unitary rotations. Here the subscript
x ∈ [u, d, e] for up-quark, down-quark and charged lep-
ton sector respectively. These unitary matrices, UL/R

x , can
be parameterised as,

UL/R
x =

[
1 − ρ

L/R
x ρ

†L/R
x

2 −ρ
L/R
x

ρ
†L/R
x 1 − ρ

†L/R
x ρ

L/R
x

2

]
(31)

where ρL
x = vLYx

MX
, ρR

x = vRYx
MX

and MX with X ∈
[U, D, E] are 3 × 3 diagonal matrices. If we assume the
bare mass terms of the vector-like fermions to be sufficiently

Fig. 1 Generation of fermion
masses through universal
seesaw mechanism
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Fig. 2 Variation of heavy-top mass (MT ) as a function of (vR) for
different values of top Yukawa coupling Yt

large, then in the limit vLYx � vRYx � MX , the ele-
ments of ρL ,R will be significantly smaller than unity. Using
the matrices UL/R

x as described in Eq. 31, the mass matrices
can be diagonalised and the standard model charged fermion
masses would take the following form,

mu � vLvRY2
u

MU
, md � vLvRY2

d

MD
, me � vLvRY2

e

ME
. (32)

Such seesaw realisation of fermion masses are termed as
Universal seesaw mechanism [31–35]. The aforementioned
seesaw relation has an interesting consequence on the heavy-
top mass, MT . From Eq. 32 one can notice, if MT 	 vR,

then Yt should be much larger than one to satisfy correct
top quark mass. For this large value of Yt the underlying
model would violate perturbativity and consequently leading
to instability of the electroweak vacuum. In Fig. 2, we have
shown the variation of the heavy-topmass as a function of vR
to show the variation of the top Yukawa coupling (Yt ). This
will help us to identify the allowed region parameter space
of our model which is MT ≤ vR .

3 Neutrino mass generation

In the last section we have laid out the essential details of
the model. Now we will turn our attention to neutrino mass
generation. Due to the absence of gauge singlet field compo-
nents, the neutrinos in this model do not achieve the necessary

masses via tree level Yukawa like terms. However, the addi-
tional lepton and scalar fields of the model that are charged
under the gauge group SU (2)L×SU (2)R×U (1)B−L interact
via loop mediated process with neutrinos and induce small
Dirac type neutrino mass. The model conserve lepton num-
ber which is the consequence of the Dirac neutrinos present
in our model. To elaborate this point, let us write down the
essential part of the fermion sector Lagrangian, as discussed
in Eq. 26:

L f ermion ⊂ Yzi j Lc
LiζL EL j+Yci j Lc

Li LL jχ
+

+ (L → R) + h.c. (33)

Expanding the above Eq. 33, one can figure out all possi-
ble Feynman diagrams that would generate the one loop
neutrino mass. In Fig. 3 we present the corresponding dia-
grams in the gauge basis. The right plot of Fig. 3 can be
obtained from the left plot by simply interchanging the left
and right handed components respectively. In the mass basis
of the fermions the left plot give two contributions, i.e.
the contribution of e and E, to neutrino mass: (mν(e) +
mν(E))ν̄LνR + h.c., similarly the right plot also has two
contribution: (m̃†

ν(e) + m̃†
ν(E))ν̄RνL + h.c. Here the flavor

indices are suppressed. Hence there are four contributions,
two from each diagrams, which would generate neutrino
mass at one loop in our model. This can be clearly seen from
Fig. 4.

In Fig. 4 we present the loop diagrams contributing to the
neutrino mass generation considering the mass basis of dif-
ferent scalar and charged fermions. Both the light and heavy
charged leptons along with the heavy singly charged scalars
are responsible for radiative one loop Dirac mass of neutri-
nos. Considering all the contributions the 3×3 non-diagonal
neutrino mass matrix in the flavor basis, viz νe, νμ, ντ will
be,

mmn
ν = mν (ei )

mn + mν (Ei )
mn + m̃ν (ei )

mn + m̃ν (Ei )
mn

(34)

where m, n ∈ [e, μ, τ ] for three flavors of neutrinos. Each of
the individual contributions to the neutrino mass is obtained
as,

Fig. 3 Diagrams responsible
for One-loop neutrino mass
generation in gauge basis
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Fig. 4 Diagrams responsible
for One-loop neutrino mass
generation in mass basis

mν (ei )
mn = Ymi

c

⎡
⎣UL f

11
mei

16π2

∑
j

Uh±
1 j U

h±∗
3 j

×
m2

h±
j

m2
h±
j

− m2
ei

ln

⎛
⎝m2

h±
j

m2
ei

⎞
⎠UR f †

21

⎤
⎦Yni

z

mν (Ei )
mn = Ymi

c

⎡
⎣UL f

12
mEi

16π2

∑
j

Uh±
1 j U

h±∗
3 j

×
m2

h±
j

m2
h±
j

− m2
Ei

ln

⎛
⎝m2

h±
j

m2
Ei

⎞
⎠UR f †

22

⎤
⎦Yni

z

m̃†
ν (ei )

mn = Ymi
c

⎡
⎣UR f

11
mei

16π2

∑
j

Uh±
1 j U

h±∗
2 j

×
m2

h±
j

m2
h±
j

− m2
ei

ln

⎛
⎝m2

h±
j

m2
ei

⎞
⎠UL f †

21

⎤
⎦Yni

z

m̃†
ν (Ei )

mn = Ymi
c

⎡
⎣UR f

11
mEi

16π2

∑
j

Uh±
1 j U

h±∗
2 j

×
m2

h±
j

m2
h±
j

− m2
Ei

ln

⎛
⎝m2

h±
j

m2
Ei

⎞
⎠UL f †

21

⎤
⎦Yni

z (35)

where, UL ,R are the charged lepton mixing matrix, Uh±
is

the singly charged scalar mixing matrix and mh±
j

∈ [Mχ± ,

Mζ±
L
, Mζ±

R
]. For better understanding of the aforementioned

contributions to the neutrino mass we have elaborately dis-
cussed one contribution, the contribution of SM like leptons,
in Appendix A.

The 3 × 3 non-diagonal matrix in Eq. 34 can be diag-
onalised by bi-unitary transformation to generate the light
neutrino mass in mass basis, viz ν1, ν2, ν3 as,

U †mνV = md
ν (36)

whereU is the usual PMNS matrix and V is the right-handed
counterpart.

In Fig. 5 we have shown the variation of Yukawa cou-
plings, Yz and Yc, with respect to the singly charged scalar
mass M±

χ for normal hierarchy. For inverted hierarchy the
behavior is same as that of normal hierarchy and hence we
have not shown them separately. The figures provide evi-
dence for the existence of parameter space satisfying 3σ neu-

trino oscillation data. Assuming M±
χ to be the lightest one,

hence considered to be an independent variable, the heavy
vector like leptons and the heavy charged scalars are consid-
ered to be of the O[TeV]: ME = 10 TeV, Mζ±

L
= 2Mχ± and

Mζ±
R

= 3Mχ±. Among the neutrino oscillation parameters,
for the CP-phase we consider δCP = 180o. From Eq. 35,
It is clear that out of the two contributions: the SM lep-
tonic contribution and the heavy leptonic contribution, the
major contribution comes from the heavy fermion loop. I.e.

mE × m2
h±

m2
h±−m2

E
ln

(
m2
h±

m2
E

)
. Also for a given heavy fermion

mass, with increase in charged scalar mass increases the cor-
responding loop contribution. From Fig. 5 it is clear that with
large charged scalar mass we require small diagonal Yukawa
couplings, viz Yz, however the anti-symmetric Yukawas Yc

don’t follow a particular pattern and can span over a large
range of parameter space.

4 Phenomenology

We now turn our attention towards the phenomenological
aspects of this model with the extended particle content: the
additional heavy gauge bosons, scalar particles as well as
fermions. With an extensive charged as well as neutral scalar
spectrum, the model has a rich phenomenological implica-
tion. Significant number of searches for BSM scalars, both
charged and neutral, have been carried out at the LHC by
ATLAS and CMS collaboration, and the scarcity of any
excess over SM signal ensued stringent constraints on viable
parameter space. Firstly we discuss some of the important
constraints applicable on the model parameter space and then
quantify production cross-section of some of the BSM par-
ticles in pursuit of the future collider searches.

4.1 Constraints

4.1.1 Constraints from LFV

The presence of doubly charged Higgs and its interaction
with the SM fermions can give rise to possible lepton flavour
violating (LFV) processes. A detailed discussion on LFV
constraints can be found in [58–60]. From the fermion sec-
tor Lagrangian as described in Eq. 26, one can notice that no
two charged SM leptons couple to the doubly charged Higgs
(Eq. 33 for details) through the tree level interaction terms.
Therefore processes such as li → l j lkll can not occur at
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Fig. 5 The figure shows the
variation of Yukawa couplings,
Yz and Yc, with respect to M±

χ

taking 3σ variation in neutrino
oscillation data with an
exception of δCP = 180o in
Normal hierarchy. The values of
masses of other heavy particles
are mention in the text. The
figure proves the existence of
available parameter space in our
model. Similar behavior has
been obtained for Inverted
hierarchy and hence not shown
separately

tree level. However the aforementioned process and other
LFV processes, such as μ → eγ can occur at one-loop
where light-heavy charged lepton mixing play a crucial role.
Among the limits that are obtained from non-observation of
different LFV processes, we consider the following stringent
constraints for μ → eee and μ → eγ. The current lim-
its on these are BR(μ → eee) < 1.0 × 10−12 [61] and
BR(μ → eγ ) < 4.2 × 10−13 [62]. In our model these
constraints lead to following relations between the doubly
charged Higgs mass as well as relevant Yukawa terms

μ → eee : |(UL
11)2iY i j

z (UL
21) j1||(UL

11)1αYαβ
z (UL

21)β1|

< 2.3 × 10−7
(

m++
H

100 GeV

)2

μ → eγ : |(UL
11)2iY i j

z (UL
21) jk ||(UL

11)kαYαβ
z (UL

21)β1|

< 2.7 × 10−6
(

m++
H

100 GeV

)2

. (37)

Here the repeated indices are summed over. In the above,UL
i j

and Yz are the left-handed unitary rotation and the Yukawa
matrix respectively. In our current study, we have chosen
the Yukawa matrix Yz to be diagonal (see Eq. 27). We have
also considered YeL to be diagonal in the flavor basis, which
results in a diagonal UL

11 and UL
21 matrix. As a consequence

the LFV constraints won’t affect the relevant parameter space
of this model. However, if one consider a non-diagonal sym-
metricYz matrix, then the LFV constraints can still be evaded

if one consider the value of different mixing parameters to
be less than O(10−3).

4.1.2 Collider constraints

The doubly charged Higgs in the model can copiously be
produced at the LHC. However their decay to SM particles
are mixing suppressed. Similar conclusion holds for singly
charged Higgs from the same multiplet ζL and ζR . Hence the
production-times-branching of the charged Higgs, mainly the
scalars from the extra doublets, are not significant for LHC.
However the singlet scalar χ±, has direct interaction with the
SM leptons leading to unsuppressed branching ratios, hence
the collider constraints are directly applicable on this scalar.
We have reinterpreted the ATLAS dilepton+missing energy
search [63] using CheckMATE and obtained the unfavoured
region marked in blue colour in Fig. 6.

4.1.3 Mono-photon constraints

The singly charged Higgs χ± primarily couples to SM lep-
tons in this model. As a result this charged Higgs can directly
contribute to e+e− → νν̄γ cross section. In case of SM,
the s-channel Z boson exchange and t-channel W boson
exchange channel participate in this process. In Fig. 7, we
present the Feynman diagrams correspond to each of these
processes.
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Fig. 6 Direct as well as indirect constraints in M±
χ versusYc plane. The

blue colored region is excluded from ATLAS di-lepton+MET search
[63], and the yellow region is constrained by mono-photon search from
LEP [64]. The pink region is the excluded region from BBN [65]. The
figure shows that the BBN constraint is more strong as compared to the
ATLAS di-lepton+MET search and LEP mono-photon search

Fig. 7 Feynman diagrams of the s-channel Z boson exchange and t-
channel W boson exchange for e+e− → νν̄γ process in SM

Fig. 8 Feynman diagram of the
t-channel χ± boson exchange
for e+e− → νν̄γ process

In presence of new physics (NP) interactions additional
diagrams would contribute to this process which can poten-
tially deviate the currently measured cross section. As a con-
sequence, one can adopt the γ + /ET cross section to impose
suitable bound on the mass of the charged Higgs as well as
the relevant couplings. The diagram correspond to t-channel
χ± exchange is illustrated in Fig. 8.

The other two singly charged Higgs ζ±
L/R and heavy WR

boson also contribute to this process. As we have set their
masses to a large values the effects coming from these exotic
channels can be ignored owing to a large propagator sup-
pression. To calculate the cross section we will first calculate
the tree level e+e− → νν̄ cross section (σ 0

ee→νν̄) and incor-
porate the photon emission effect with an appropriate radi-
ator function as described in [66]. The relation between the
cross section σ 0

ee→νν̄ and the full cross section is described
in Eq. 38:

σee→νν̄γ (s) =
∫

dx
∫

dcγ H
(
x, sγ ; s) σ 0

ee→νν̄

(
ŝ
)
,

H
(
x, sγ ; s) = α

π

1

s2
γ

1 + (1 − x)2

x
. (38)

Here s is the center-of-mass energy, the cross-section σ 0
ee→νν̄

is evaluated at the energy scale ŝ = (1 − x)s. The function
H determine the probability of radiation where the photon is
emitting with an energy x = 2Eγ√

s
at the angle θγ , which is

the angle between the emitted photon and the beam axis. The
sγ and cγ stands for sine and cosine of the θγ respectively. In
Eq. 39, we present the analytic expression for the σ 0

N P that
arises due to the χ exchange. The first line corresponds to the
square of χ mediated amplitude whereas the second and third
term signifies the interference with the W and Z exchange
diagrams respectively

σ 0
N P (s)

= 3Y4
c

16πs2

(
(M2

χ+s)2

M2
χ

−2(M2
χ+s) log

[M2
χ+s

M2
χ

]
−M2

χ

)

+ GFY2
c M

2
W

2
√

2πs2(M2
χ−M2

W )

(
2(M2

χ−M2
W ) − (M2

χ + s)2

log
[M2

χ + s

M2
χ

]
+ (M2

W + s)2 log
[M2

W + s

M2
W

])

+ 3GFY2
c M

2
W (M2

Z − s)

4
√

2πs2((M2
Z − s)2 + M2

Z�2
Z )

(1 − 2s2
w

1 − s2
w

)
(

4sM2
χ + 6s2

4
− (M2

χ + s)2 log

[
M2

χ + s

M2
χ

])
. (39)

Here Yc and Mχ signifies the relevant coupling and the mass
respectively. The logarithm dependency arises because of the
χ± mediation via t-channel mode. The SM counterpart σ 0

SM
for the tree level e+e− → νν̄ process is mentioned in [67].
Substituting σ 0

N P (s) in Eq. 38 while appropriately changing
the variables and integrating over the convolution function
H, one can evaluate the full cross section for the new physics
interactions as well as for the SM piece. To compare our result
with the experimentally measured data we first add the NP
and SM contribution together to obtain the total cross section
for the underlying process i.e. σ(s) = σN P (s) + σSM (s). To
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derive the constraints from the experimental results, one can
interpret |σ − σexp| ≤ δσexp, where σexp ± δσexp is the
experimental measured cross section for the process ee →
νν̄γ. Expanding the σ with the NP and SM contributions and
dividing both side with σSM one can write [67],
∣∣∣∣1 + σN P

σSM
− σexp

σSM

∣∣∣∣ ≤
(

σexp

σSM

)(
δσexp

σexp

)
. (40)

From Eq. 40, one can translate this inequality to impose
bound in the Mχ vs Yc plane. To do so, we adopt the results
from [64], and considering the veto 14◦ < θγ < 166◦,
Eγ > 1GeV and pγ

T > 0.02s. The measured experimen-
tal value we have used is, σexp(pb) = 4.29 ± 0.85 ± 0.05
for

√
s = 208 GeV, where the first uncertainty on σexp is

statistical and the second is systematic. The theoretical cross
section, σSM , is considered to be 4.12 pb with a the theoret-
ical uncertainty of 1% [64,68]. We can see that the central
values, σexp and σSM , are not the same but of the same order.
The exclusion region for this bound is illustrated as the yel-
low shaded region in Fig. 6.

4.1.4 BBN constraints

The neutrinos in this model obtain the required eV scale
Dirac mass via loop-mediated process. The νR is the right
chiral component of the Dirac field. In principle, this new
degrees of freedom, νR, can populate the early universe via
�+�− ↔ νR ν̄R, with cross-section denoted as σR, where
the process is mediated through t-channel χ± exchange.
The Big Bang Nucleosynthesis (BBN) suggests the new
relativistic degrees of freedom must lie within the range
�Nef f ≡ Nef f − 3.046 = 0.10+0.44

−0.43 at 95% confidence
level with the combination of He + Planck TT + lowP + BAO
Dataset [65]. Using [65,69,70], one can recast this limit for
our model and impose constraints in the Mχ − Yc plane. To
satisfy this condition, we demand the right-handed neutrinos
decouple from the thermal bath before the quark-hadron tran-
sition. Setting the decoupling temperatures for right handed
neutrinos is Td,νR ≈ 200 MeV and for left handed neutrinos
is Td,νL ≈ 3 MeV [71] respectively, one can put an upper
bound on �+�− → νR ν̄R cross section via [72] following
relation,

(Td,νR/Td,νL )
3 ≈ (σL/σR) = (2M±

χ /vLY i
c|V�i |)4 (41)

where |V�i | is the right-handed counterpart of the UPMNS

matrix which is required to diagonalise the neutrino mass
matrix (see Eq. 36) and vL is the vev that invoke the symmetry
breaking of SU (2)L gauge group which is 246 GeV. Fixing
|V�i | at a moderate value 0.5, we deduce the corresponding
bound and illustrate the exclusion region in the Fig. 6 as a
pink shading.

4.2 Charged Higgs boson decay and production

With a large number of scalars: neutral, singly and doubly
charged, the model has a rich phenomenological implication.
Though the presence of doubly charged scalar makes the
model more interesting, its interaction with the SM leptons
are proportional to the heavy-light lepton mixing, and is not
quite promising. However the singly charged scalar (χ±) has
direct interaction with the SM leptons and is independent of
the heavy-light lepton mixing. Thus we have focused mainly
on this singly charged scalar. We considered the following
mass hierarchy of the singly charged scalars: M2

χ± < M2
ζ±
L

<

M2
ζ±
R
. The possible partial decay widths of χ± is given in

Eq. 42:

�
(
χ−
m → �−

mpνmk

)

= 1

8πM3
χ

∣∣∣2 Y i j
c U ik

PMNSU
L jp
e11

∣∣∣2 (
M2

χ − m2
�p

)
λ

1
2

×
(
M2

χ ,m2
�p

,m2
νk

)

�
(
χ−
m → ūmkdmp

) = 3

8πM3
χ

∣∣∣Y i j
q U L∗ ik

u21
UR jp
d21

∣∣∣2

×
(
M2

χ − m2
uk − m2

dp

)
λ

1
2

(
M2

χ ,m2
uk ,m

2
dp

)
. (42)

From the aforementioned, Eq. 42, it can be seen that the singly
charged scalar, χ±, has two possible decay modes: l ν̄ and
ū d, where the flavor indices are suppressed. While for the
former, the light-light lepton mixingUL

e11
enters in the expres-

sion of partial decay width, for the later decay mode bothUL
u

and UR
d enters in the expression. The Yukawa coupling, Yq ,

which is a free parameter of the model can be chosen of
the O[10−2] such that the leptonic mode become the most
dominant decay channel.

The analytical expression for the χ±χ∓ pair production
at e+e− collider is given by [73,74],

σe+e−→χ±χ∓ = 2G2
FM

4
Ws4

θW

3πs

[
1 + 4s2

θW
− 1

2c2
θW

(
1 − M2

Z
s

)

+8s4
θW

− 4s2
θW

+ 1

8c4
θW

(
1 − M2

Z
s

)2

](
1 −

4M2
χ±

s

)3/2
. (43)

We have implemented the model file in FeynRules [75]
and used MadGraph [76] to get the leading order cross sec-
tions. For comparison purpose, we have presented the cross-
section for pair-production ofχ± at 14 TeV LHC and at 3 TeV
CLIC in Fig. 9. For Mχ± = 500 GeV at 14 TeV LHC and
at 3 TeV CLIC the cross sections are obtained to be 0.69 fb
and 20.3 fb respectively. Again from the figure it is clear that
with increase in the mass of χ± the cross section for LHC
falls more sharply as compared to CLIC.
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Fig. 9 Production cross-section of χ± at
√
s = 14 TeV LHC and√

s = 3 TeV CLIC

4.2.1 Associated production of χ± from decay

The model also contains many heavy vector like fermions,
important for the mass generation of the SM fermions. For
our choice of masses, a pair of the heavy vector like top
and its subsequent decay can also produce charged scalar
χ± hence increasing the total production cross-section of
χ±. The partial decay widths of the heavy-top T and heavy-
bottom B are expressed as follows,

�(T → thsm) = 1

16π2M3
T

1

4
|Yu |2(M2

T + m2
t − m2

hsm )λ
1
2

×
(
M2

T ,m2
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. (44)

In the left panel of Fig. 10 we show the branching frac-
tions of heavy-top T, considering the heavy-bottom mass
MB = 2 TeV, M±

χ = 500 GeV and heavy neutral scalar
mass MH0 = 2 TeV respectively. In the right panel of Fig. 10
we have shown the branching fractions of heavy-bottom B.
The Yukawa couplings, Yq and Yu,d , are set to 1 and 0.01
respectively.

From Fig. 10, its clear that before the threshold of heavy-
bottomB and the heavy neutral scalar H0 the dominant decay
mode of the heavy-top T will be the t hsm mode. After the
heavy-bottom B threshold is reached the dominant decay
model of the heavy-top will be the Bχ± mode. Similarly
for before the heavy neutral scalar H0 threshold the heavy-
bottom will decay dominantly into b hsm mode.

Figure 11 shows the TT̄ pair-production cross-section at
14 LHC, and at a pp machine with

√
s = 27 TeV respec-

tively. For higher mass of the heavy-top quark (T), a larger
center of energy is more suitable, which is quite apparent
from the figure.

With the information of the production cross section of
the heavy-top pair and their respective decay modes, we pre-
dict the most efficient signal, a multi b-jet as well as multi
lepton final state, for the heavy-top T discovery at LHC.
In Table 3, we have shown the predicted cross section for
6b + 2l + /ET final state resulting from the consequent decay
of the produced heavy-top T at 14 and 27 TeV LHC respec-
tively. We have considered MT = 3 TeV, MB = 2 TeV,

Mχ± = 500 GeV.

5 Summary

We have discussed an alternate variant of Left-Right sym-
metric model, embedding Dirac type neutrinos, where the
small neutrino masses have been generated radiatively. In the
absence of any bi-doublet scalar charged under both SU (2)L
and SU (2)R, we consider a universal seesaw scheme for the
mass generation of SM like charged fermions; the realization
of such a seesaw mechanism is performed by heavy vector-
like fermions. In the absence of any gauge singlet neutrino,
light neutrinos acquire their masses radiatively. For neutrino
mass generation at one-loop, we require additional scalar
multiplets. We consider 3σ variation of neutrino oscillation
data and find out the relevant parameter space, in which neu-
trino mass and mixings are satisfied. We find that

123



Eur. Phys. J. C (2023) 83 :480 Page 13 of 16 480

Fig. 10 Branching fractions of heavy-top quark (T) and heavy-bottom quark (B)

Fig. 11 Production cross-section of heavy-top quark (T) for
√
s = 14,

27 TeV LHC respectively

Table 3 In the above table, we have shown the predicted cross section
for 6b + 2l + /ET final state resulting from the consequent decay of the
pair produced heavy-top T at 14 and 27 TeV LHC respectively. Below
the kinematic threshold the producedheavy-topT decays to Bχ± and the
heavy-bottom B then decays to b hsm . Again the produced χ± decays
to l + /ET final state, leading to 6b + 2l + /ET signal resulting from
the pair produced heavy-top T at LHC. The above cross sections are
calculated by considering the following masses: MT = 3 TeV, MB =
2 TeV, Mχ± = 500 GeV
√
s Final state Cross-section

14 TeV 6b + 2l + /ET 0.72828 × 10−3 fb

27 TeV 6b + 2l + /ET 0.129132 fb

• With the increase in heavier gauge singlet charged
scalar’s mass Mχ± , diagonal Yukawa couplings Yz22,33

decrease in order to satisfy neutrino oscillation data.

• For both normal and inverted mass hierarchy, there are
ample parameter space, where neutrino oscillation data
is satisfied.

We furthermore perform a detailed analysis of the scalar sec-
tor, mostly focussing on the lightest charged scalar χ±. In
our analysis, we consider different direct as well as indi-
rect search constraints applicable on χ± including ATLAS
di-lepton+MET search [63], LEP mono-photon search [64],
and the constraints from Big-Bang Nucleosynthesis [65]. We
find that the BBN constraint can rule out a significant param-
eter space,

• In particular, Yukawa coupling Yc, which is the cou-
pling between χ± and a lepton and neutrino, larger than
0.3 (0.7) are ruled out for Mχ± > 400(1000) GeV
from BBN. The LEP mono-photon constraint is relatively
relaxed than the BBN bounds.

• ATLAS di-lepton+MET search rules out Mχ± < 320 GeV
independent of the parameter Yc.

• The LFV in our case does not impose any serious con-
straint on the model parameters.

The extended scalar sector which is required for the neutrino
mass generation at one-loop via Figs. 3 and 4, has rich phe-
nomenological significance. Out of the three singly charged
scalars (ζ±

L , ζ±
R , χ±), the singlet one χ± has direct interac-

tion with two SM leptons and hence can give rise to a l+ /ET

and qq ′ final states. We discussed its collider phenomenol-
ogy such as production, decay and branching ratios in detail.
We find that

• For Mχ± between 250–1000 GeV, the pair-production
cross-section at 14 TeV LHC varies as σ ∼ 102−10−1 fb.
For a e+e− machine with c.m.energy 3 TeV, cross-section
is σ ∼ 10 fb.
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Furthermore, we also consider the associated production of
χ± from the decay of a heavy vector like top-quark T. We
find that, the heavy vector-like T quark of mass ∼ 1 TeV can
copiously be produced at the HL-LHC with σ ∼ 102 fb, and
decay pre-dominantly to a χ± and heavy vector-like B state.
A more sophisticated collider analysis of the BSM particles
will be our future goal.
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Appendix A: One-loop calculation of neutrino mass

From Fig. 4, the loop integral with the SM charged leptons
mediating the loop will be [77],

− i�mn =
∫
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where

� = 2
ε

− ln π + γE
2

μ = Scale of renormalisation
ξmn = Ymb

c U L
11bαU

R∗
21βαYnβ

z

B0 is the Passarino–Veltman function and its expression
can be found in the literature [80].

with further simplification one can obtain the mass contribu-
tion coming from mν (ei )mn term. Similarly the rest of the
three contribution can be calculated.
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